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Abstract. We study the renormalisation aspects of a generalised Coulomb gas by means 
of a novel method of renormalisation. The model corresponds to an XY system with 
N-fold symmetry breaking perturbation and is cast in a field-theoretical framework. 

The method uses the operator product expansion and the renormalisation constants 
are obtained from the singular terms in this expansion as the ultraviolet cutoff is removed. 
This method clearly exposes the multiplicative renormalisations involved. An expansion 
in the departure of the Kosterlitz-Thouless temperature, fugacities, and in E = N-4 to 
third order is performed. We find a non-trivial self-dual fixed point at which the vortex 
and symmetry breaking fugacities are of order A. 

The method also allows the identification of a new set of ‘fixed-point’ theories that d o  
not undergo renormalisation. 

1. Introduction 

In this paper we study the critical properties of a generalised Coulomb gas by means 
of a novel field-theoretical method of renormalisation. 

The theory studied corresponds to an XY model with N-fold symmetry breaking 
perturbation in the Coulomb gas representation proposed by JosC et a1 (1977) (hereafter 
referred to as JKKN),  Kadanoff (1978), Nienhuis (1984, 1987) and Cardy and Parga 
(1980). 

The model has been previously studied in its field-theoretical framework by Wieg- 
mann (1978), Ohta and Jasnow (1979), Amit et a1 (1980), and in the context of random 
symmetry breaking perturbations by Houghton et a1 (1981). In its simplest form 
(without symmetry breaking perturbations) the associated field theory is the sine- 
Gordon model. The first studies of this theory were done by Mandelstam (1975) and 
Coleman (1975) in a different context. 

To our knowledge the work of Amit et al presents the most thorough analysis of 
the sine-Gordon model to date. However, the results of these authors on symmetry 
breaking perturbations is incomplete and does not agree with those of JKKN. 

In particular Amit et a1 claim that the symmetry breaking perturbations renormalise 
independently of the other operators of the theory and this is in contradiction with 
the renormalisation group equations of JKKN.  In this paper we propose a novel method 
of renormalisation that allows a better understanding of the renormalisation aspects 
and clearly shows how symmetry breaking perturbations do modify the renormalisation 
group equations by affecting wavefunction and vortex fugacity renormalisation. 

The method involved exploits the operator product expansion (OPE) and provides 
a simple and systematic way of renormalising the theory by looking at the singularities 
in the OPE of the interaction terms in the field-theoretical Hamiltonian. 

0305-4470/89/132601+ 14$02.50 0 1989 IOP Publishing Ltd 2601 



2602 D Boyanovsky 

Some virtues of the method are that it explicitly exhibits the need for multiplicative 
renormalisation of the singular terms in the OPE, and explicitly maintains the discrete 
symmetries of the theory. This method is radically different from that advocated by 
Amit et a1 (1980) in the context of the sine-Gordon model (no symmetry breaking 
perturbations), but close in spirit (but also somewhat different) to that advocated by 
Lovelace (1986). 

It has been recognised by JosC et a1 (1977) and Amit et a1 (1980) that near the 
Kosterlitz-Thouless (1973 hereafter referred to as (KT))  temperature (p’  = 877 in Amit 
et a / )  perturbations with N < 4 are relevant, N = 4 marginal and N > 4 irrelevant. 

We carry out a double expansion in 6 = p2/8.rr - 1 and E = N -4. Our method 
clearly shows that the symmetry breaking perturbations drastically change the renor- 
malisation aspects of the theory and, in fact, they contribute to the renormalisation of 
wavefunction and vortex fugacity. Renormalisation group equations are obtained up 
to third order in the fugacities. 

We find a non-trivial self-dual fixed point at which p = p* = 277N and the fugacities 
are of order &, for N >4. 

In § 2 we review the Coulomb gas model corresponding to the X Y  model with 
N-fold symmetry breaking interactions, and we derive the underlying field theory 
following Wiegmann (1978). The material in this section is fairly well known but is 
included for self-consistency. 

In § 3 we introduce the renormalisation scheme and by looking at the singularities 
in the OPE we prove multiplicative renormalisation. 

Section 4 is devoted to the renormalisation procedure and the computation of the 
renormalisation constants and the RG beta functions. The duality properties are 
analysed in these beta functions. The existence of a non-trivial self-dual fixed point 
is pointed out and some properties of this fixed point are analysed. 

In § 5 we use the method to show the existence of a set of ‘fixed-point’ theories. 
Section 6 relates the Coulomb gas under study in the previous sections to fermionic 

A conclusion summarises the results and poses further questions. 
Three appendices are devoted to technical details. 

models of generalised dimerised spin chains. 

2. The model 

The model that we propose to study is basically the planar model with an N-fold 
symmetry breaking field in the form proposed by JKKN. 

After a duality transformation and in the Villain approximation (see JosC et a1 
(1977) for details) the partition function is 

+ 2 ~ i m ( R ) + ( R )  + In y,mZ(R) + In yNn2(  R )  , (2.1) )I 
In the above expression the integration range of the variable + has been extended 

to infinity. A is an integer-valued (gauge) vector field that lives on the links of the 
original lattice obeying the condition 

VxA(R) = n ( R )  (2.2) 
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where Vx is the two-dimensional curl. In equation (2.1) the integer-valued fields m ( R )  
and n ( R )  (living at the sites of the lattice), represent the vortices and symmetry breaking 
excitations respectively. The terms with yo and y N  correspond to the fugacities of both 
types of excitations and we have assumed a simple form for these terms following 
Kadanoff (1978) and Nienhuis (1984, 1986). The above form for the fugacities term 
assumes charge symmetry with respect to the sign of the 'charges' n ( R ) ,  m ( R ) .  

The partition function (2.1) has the gauge symmetry 

(2.3) 

with a ( R )  being an integer-valued field. It is precisely this gauge symmetry that allows 
the extension of the integration range in 4 ( R ) ,  and that ensures that condition ( 2 . 2 )  
completely defines the vector field A up to 'gauge transformations'. 

As pointed out by Kadanoff (1978) the above theory can be looked at as a system 
of electric charges and magnetic monopoles in two dimensions, under a duality 
transformation n ( R )  c, m ( R ) .  

Integrating out the spin waves in (2.1), the partition function becomes (Nienhuis 
1984, 1986) 

11 - i Nn ( r )  e( r, r l )  m ( r l )  + In yom2(  r )  +In y,n2( r )  (2.4) 

where G(r, r l )  is the two-dimensional Green function and O(r, r ' )  is defined by the 
relations 

1 
G(r, r ' )=--lnp2[r-r '12 

4T 

OG(r, r l )  = - 6 * ( r )  

where y, x are the Cartesian coordinates on the plane and p is an infrared cutoff 
inversely proportional to the size of the system. 

The functions G ( r )  and O ( r )  are dual to each other and satisfy 
1 

d,G( r )  = - E , ~ ~ ~ O (  r )  
2T 

with p, Y = 1,2  and 

be exactly written as 

z [ K ? y O , y N l = l j  I - = c ~ ( r )  n.m c exp[ -1 d 2 r ( i ( ~ , 4 ) 2 - - i 2 5 7 4 ~  m ( r ) 4 ( r )  

= --sZ1 = + l .  
Now we prove that the partition function Z [ K ,  y o ,  y N ]  given by equation (2.4) can 

X 

11 N 
+i- E a A,(r)$(r)-lny,n2(r)-lnyom2(r) a hL 

(2.7) 

(2.8a) 

(2.8b) 
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The field 6 ( r )  is the dual to 4 (Wiegmann 1978). The equivalence between (2.7) 
and (2.4) is proved as follows: integrating by parts the term with 6 in (2.7), using 
(2.86) and integrating by parts again it is written as 

Now the Gaussian integrals over 4 can be performed and by using equation (2 .5)  

Keeping only the excitations with m, n = 0, *1 as in J K K N  we approximate 
and the relation given by (2.6) one arrives at the expression given by (2.4). 

Z [ K ,  Yo, YNI by 

where 4 and 6 are related as in equation (2.86) and we introduced the lattice spacing 
(uv cutoff) a and defined 

2Yo = f fo/PI%z2 

2 y ,  = GO/8ra2.  

(2.10) 

The above definitions will allow us to compare the results with those of Amit et al 
(1980). The expression (2.9) is the starting point of the field-theoretical approach and 
coincides with that proposed by Wiegmann ( 1980). 

3. OPE and multiplicative renormalisation 

As usual we regard (2.9) as the continuation to Euclidean space of a quantum field 
theory in Minkowski space. The perturbative expansion and subsequent renormalisa- 
tion will be carried out in the interaction picture in field theory in which the fields in 
the expansion are free. For the moment we will work in Minkowski space with signature 
(+, -) and we will freely continue back to Euclidean space with t = -iy. In two 
dimensions in Minkowski space the solutions to the wave equation 

C!&(x, t )  = o  (3.1) 
are of the form 

4(x, t ) = 4 R ( X - f ) + 4 L ( X + f )  ( 3 . 2 ~ )  

where 4R, 4L are right and left going waves. Out of 4R and 4L we construct the dual 
field 

6(x, t ) = 4 R ( X - f ) - 4 L ( X + f )  (3.26) 

satisfying 

_ -  a4 a 6  - -- 
a t  ax’  

Therefore in Euclidean space with t = -iy they satisfy equation (2.8b). 

( 3 . 2 ~ )  
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The fields 4 R ( ~ ,  t )  and 4L(x, t )  are expanded in the usual way (see, for example, 
Green et a1 1987) in terms of creation and annihilation operators and right and left 
going plane waves. 

Defining the annihilation and creation parts of +R(C#JL) as $J:, 4ii (C#JL, 4;) ,  
respectively, and defining 

x - t = x +  x + t = x -  (3 .3)  

it is straightforward to find the following commutators: 

1 
47r 

1 

[C#Ji(xT), 4R(X:)I =(4R(x:)4L(x:)) = --1n[p(X: -x l )1  
(3.4) 

[ ~ Z ( X ; ) ,  4;(x;)I = ( # Y ( x ~ ) & ( x Y ) )  = -z ln[~(x;-x;)I .  

In Euclidean space equations (3.3) become 

x+ = x + iy = r exp(i@) x-  = x - iy = r exp( -io) 
with r, 0 the polar coordinates on the plane. Therefore, the Euclidean continuation 
of equation (3.4) is written in terms of G ( r ,  r l )  and O(r ,  r l )  of equation (2.5). Again, 
we introduce the infrared cutoff l / p  of the order of the size of the system. 

Using the results of appendix 1 we put into normal order the interaction terms in 
(2.9) with respect to the free massless field 4 (in the interaction picture) and write the 
cosine terms in (2.9) as 

2 
%P 2 2 6 Gap2 2 2 s 9, =? ( p  a ) 0:cos P04: +- ( p  a ) 0:cos(27rN/P~)$:  (3 .5)  

P O  857 

with 

( 3 . 6 ~ )  

and the double dots in (3.5) refer to the normal-ordering prescription of appendix 2. 
From expression (3.5) we see that the effective coupling constants are c, 

(3.6b) 

We now prove that all operators in the action (2.9) renormalise multiplicatively. 
For this we look at the operator product expansion of the normal ordered interaction 
terms and examine the coefficients of the operators that appear, identifying those that 
are singular in the limit a -P 0. The perturbative expansion is in terms of a l ,  G I ,  6 and 
s' since for 6, s'= 0 the cosine operators in (3 .5)  become marginal (Amit et a1 1980). 
This in turn means that, besides expanding in terms of the fugacities, we are also 
expanding in P: near P i  = 87r, i.e. the KT temperature K = 2/ T and E = N -4 .  

Using the results of the appendices we find the following operator product 
expansions contributing to the renormalisation of wavefunction and interactions. In 
the following we cast our results in Euclidean space. 
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3.1. Wavefunction renormalisation 

From appendix 2 we find 
:cos P&(x): :cos P&(y):  

(3.7) 

where the dots stand for higher-order derivative terms that do not have singularities 
as x + y  for j3;=8ir, Therefore, to second order in a l ,  the term contributing to 
wavefunction renormalisation is 

Similarly the contribution to wavefunction renormalisation from the symmetry 
breaking perturbations is (see appendix 2) 

(3.9) 

3.2. Renormalisation of the vortex fugacity (a lp : )  
To order a3  the contribution arises from the operator product expansion of 

d2x d2y d2z:cos p r j ( x ) :  :cos p d ( y ) :  :cos p+(z) :  I 
P 2 / 4 m  =$I d2xd2yd2z  : C O S ~ ( # J ( X ) + ~ ( ~ ) - ~ ( Z ) ) :  

+ non-singular terms. (3.10) 
We must only keep the connected part of this contribution, since for p z  = 8 i r  there 

is a quadratic divergence for both x + z and y-* z, but this is disconnected. The 
connected divergences have only logarithmic singularities (see appendix 3 for details). 
Therefore the contribution to the renormalisation of a , /p i  is given by the connected 
singularities of the expression above: I d2x :cos P ~ ( x ) :  p4 d2y d2z( c=--- 

8 
(3.11) 

1 a:p2 

The symmetry breaking perturbations also contribute to the renormalisation of 
alp’  as can be seen from the term 

-- G’p4 ( -- I d’x I d2y I d2z :cos y4(x):  :cos y;(y): :cos p+(z) :  
2 ( 8 ~ ) ~  
where y=2irNIpo.  To this order we can set N = 4  and p i = 8 ~ .  The singular part 
in this OPE contributes 

x+)(z- - y-) P2/457 

) ( (P21x-Y12) ) P2’4w rz+ (z- - - x-)(z+ - y’) 
1 

(3.12) 

Here again, only the connected singularities must be kept. 
The above expression is a result of the ‘angle’ interaction of the ‘electric’ and 

‘magnetic’ charges in (2.4). 
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3.3. Renormalisation of G, 

In the renormalisation of G, there is a term of order G: whose contribution is similar 
to the integral in C (equation (3.11)) and also a contribution of the form (a : /P; )  G1 
with the same singular structure as in D above (equation (3.12)). The details of these 
OPE are contained in appendix 2. 

In order to regulate the singularities in the integrals we adopt the regularisation 
prescription that distances Ix - y l ,  etc, are bounded in the interval 

a < I X - Y l <  1 / P  

with a the underlying lattice spacing and 1 / p  the size of the system. 
This prescription effectively introduces an I R  and uv cutoff maintaining the dilata- 

tion symmetries of the theory in the sense that large and small distances are treated 
equivalently. The singularities are of the form In p 2 a 2 ,  In2 p 2 a 2 ,  etc, as they must be 
in a scale-invariant theory. 

This regularisation prescription is different from that of Amit et a1 (1BO). These 
authors introduce a mass term as a 'soft' symmetry breaking perturbation. 

The above tedious and technical manipulations were required to show via 'the OPE 

that the operators involved are renormalised multiplicatively. As usual, however, the 
free energy needs a subtraction corresponding to the disconnected singularities. 

We can now proceed with the renormalisation prescription. 

4. Renormalisation 

After proving that the operators in the action renormalise multiplicatively we define 
the renormalised quantities and renormalisation functions as 

(4 . la )  

(4 . lb)  

(4 . ld)  

(4.le) 

(4 . l i )  

In the above formula the dots refer to the normal ordering in the interaction picture 
of the (massless) renormalised field dR .  

Notice the peculiar renormalisation of 6 given by (4. lh)  compared to (4 . la) .  This 
is, in fact, a consequence of the non-local relation (2.8b). In Minkowski space (see 
the discussion in 8 3 and equation ( 3 . 3 ~ ) )  6 is related to the canonical momentum 
conjugate to 4. Therefore, in order to maintain the canonical commutation relations, 
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the renormalisations (4.1 a, h )  represent a Bogoliubov transformation to the renor- 
malised fields and canonical momenta. The reader can be convinced of this fact by 
going to the Hamiltonian formulation in Minkowski space. 

We now write the Lagrangian in (1.9) in terms of the renormalised quantities as 

The point now is that the counterterms are required to cancel the singularities in the 
OPE, and they are as usual considered as part of the interaction part of 3. 

The new feature brought about by the counterterm Lagrangian is that the term 
:(a,+4R)2: (Z, - 1) contributes to the renormalisation of the fugacities. 

To see this, consider the following OPE (see the appendices for details): 

= ( -F)(Z, - 1) 2P 1 d2y :COS P R ~ R ( Y ) :  1 &+non-singular. 
R 

(4.3) 
Since Z, - 1 = O ( a 2 ,  G 2 )  to this order we can set P k =  8i7. 
A similar contribution arises from the :(d,+4R)2:(Z, - 1) term to the renormalisation 

of G. 
With the results given by equations (3.8)-(3.11), (4.3) and a similar term for G we 

find after some straightforward algebra the following renormalisation functions in 
terms of the bare quantities a o ,  Go, a0, s’, (up to third order): 

(4.4b) 

(4.4c) 

with I = In p2a2.  

the following RG beta functions: 
With the definitions (4.1 a-h) and the renormalisation constants ( 4 . 4 ~ - c )  we find 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 
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where the dots stand for higher-order terms. Two special cases of the above equations 
can be considered with the purpose of comparison with previous results. 

4.1. G R  = 0 (no  symmetry breaking perturbations) 

The above equations coincide with those of Lovelace (1986).  The discrepancy between 
these equations and those of Amit et a1 (1980) has been discussed by Lovelace. To 
lowest order for G R  = 0 these are the celebrated Kosterlitz-Thouless (1973) equations. 

4.2. G R f  0 

The equations in this case acquire a more symmetrical form by defining the vortex 
fugacity as 

and similarly for the bare quantities. In terms of this new variable ( 4 . 5 a - d )  became 
p, = ~ Y R ~ R -  Y ~ G i / 6 4  (4 .7a )  
PG = ~ G R ~ R  - GR Y 2 6 4  (4 .7b )  

(4 .7c)  
Notice that the above equations reflect the duality property Y - G ,  S - g .  The 

relative minus sign in ( 4 . 7 ~ )  is a consequence of the relation (2 .8b) .  The above equations 
for p, and pG seem in disagreement with those obtained by Nienhuis (1987) by using 
a Kosterlitz-Thouless renormalisation procedure. 

Neglecting the terms YG2 and GY2 in (4.7a, b )  reproduce the equations obtained 
by Jose et a1 (1977).  Up to this order (without the YG2 and GY2 terms) there is the 
fixed line predicted by Josi et a1 beginning at the KT point 

Y ~ ~ I T =  CYR/p',  (4 .6 )  

p p  = & p i [  Y i (  1 + SR) - G i (  1 + ZR)].  

p i = 8 7 r  (SR=O)  
Y, = *GR.  

However the full beta functions (4 .7a -c )  have a non-trivial self-dual fixed point at 
p2' R - - 2 r N  (4 .8a )  
a;=s '* ,=;& (4 .86 )  

( 4 . 8 ~ )  
with E =  N-4>0. 

This is one of the results of this paper. Notice that the perturbative expansion is 
in terms of Y / 8 r  and G / 8 r .  Therefore, the fixed point ( 4 . 8 ~ )  is qualitatively within 
the perturbative regime even for E = O( 1 ) .  

An analysis of the eigenvalues of the system of equations (4 .7a -c )  near the 
non-trivial fixed point (4 .8a -c )  shows that there is at least one irrelevant eigenvector, 
but in general RG trajectories are driven away from this fixed point in the infrared. 

Theories on the lines YR = * G R ,  P R  = p*, for N > 4 are driven towards the KT fixed 
point (&= 8 r ,  Y = G = 0 )  for Y i ,  G i <  328 or away from it for Y i ,  G i >  328. 

For N < 4 there is no non-trivial fixed point and at weak coupling the physical 
picture coincides with that of JKKN. At N = 4  there are now the JKKN fixed lines 
described by JKKN at p2 = 8r with Y = *G and again the JKKN description is still 
valid. However, for N > 4 there are the new fixed points (four of them) that describe 
a new phase of the theory. These fixed points seem to describe a 2, type or clock 
models (parafermionic theories) but in order to confirm this conjecture we need to 
calculate the conformal anomaly at this point. This is currently underway. 

N = 4 ( gR = 0) 

y2* R - - G g = 3 2 ~  
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5. More fixed-point theories 

The techniques developed in the previous two sections allow us to investigate theories 
more general than those described by the generalised Coulomb gas given by equations 
(1.4) and (1.9). In particular, consider actions of the form 

(5.1) 2 =+(a&)’+ Y~’:cos P+R: + G~’:cos /3&: 
with and 4L defined by equations (3.2~1, b )  and the double dots again indicating 
normal ordering in the interaction picture of the free massless field 4. 

From the results of the appendices we find that the relevant contributions from the 
OPE to wavefunction and coupling constants renormalisation vanish upon angular 
integrations for p2 = 47rn with n =integer. 

Hence, for p2 = 87r these are fixed-point theories for any values of Y and G. 
In particular an ‘action’ of the form (5.1) has been obtained as a bosonic form of 

the critical Ising model by bosonisation of a free massless Majorana fermion by 
Boyanovsky (1988) and previously proposed by Kiritsis (1987) and Ogilvie (1981). 

Notice, however, that critical models described by (5.1) cannot be obtained from 
the generalised Coulomb gas (2.4) and (2.9). 

As in the case of the critical Ising model, we expect these fixed-point theories to 
describe some conformal invariant field theory providing, perhaps, an explicit realisa- 
tion of representations of the Virasoro algebra. Of course, the question that remains 
is to understand the universality classes described by these theories. These questions 
will be addressed elsewhere. 

6. Relation to fermion models 

It is well known that the generalised Coulomb gas can be mapped onto fermion gas 
models and quantum spin chains (see, for example, Emery 1979). 

The work of Black and Emery (1981) summarises the critical properties of some 
two-dimensional models and makes use of the bosonisation mapping of these models 
to a generalised Fermi gas (dimerised spin chain). 

Now we use this mapping to find which fermion models can be studied from the 
Coulomb gas (2.9) by means of the RG equations obtained in the previous sections. 

From the usual bosonisation rules (see Emery 1979, Banks et al 1976, Mandelstam 
1975, Coleman 1975) it is found that 

i:($’;ax+R- *Lax$L): = ( a x 6 R ) 2 + ( J x 4 L ) 2  

1 1 
:+i+R: =J;;:a.+,: : $ L h :  = J;; ax6L 

:+‘;+L: = :exp(i& 4): 
[:$‘;4;:lM = :exp(iM& $1: 

with (LR, +L the right and left moving components of a free Fermi field. 
Hence the Hamiltonian H = HI + Ht with 

= VF dX{:i(Jl~a.*R-+:ax*L): +gl((:*i*R:)*f(:*;+L:)’)+fg*:(LtR*R: : l , ! lL$~:}  I 
H2 = I dX{g,(:Ilr’;+~+Hc:) +g4[(: $ i$L :  ) M  + ( :$L$R: )~ ]}  
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is equivalent to the Coulomb gas (2.9), after a Bogoliubov transformation and a 
rescaling of the Fermi velocity 

U$=+ 5 F  = ?IF[( 1 + g , /  57)’ - ( g 2 /  T ) 2 ] 1 ’ 2 .  

In this 1anguage.the constant p in (2.9) is given in terms of g , ,  g2  by 

an3 M = N/2.  
We therefore see that the Coulomb gas described by (2.9) only applies to the 

Black-Emery Hamiltonian for N = 2 ,  Df = D- (in BE convention) corresponding to 
the charge symmetric situation, and no umklapp scattering term (g, = O  in BE).  The 
umklapp scattering term corresponds to keeping electric charges *2 in the Coulomb 
gas description. 

The application of the RG methods developed in this paper to the case of charge 
asymmetry and umklapp scattering, along with the study of susceptibilities and correla- 
tion functions, will be reported elsewhere. 

7. Conclusions and further questions 

In this paper we have studied a novel method of renormalisation in a field-theoretical 
description of a generalised Coulomb gas model. The method exploits the operator 
product expansion and allows a systematic and simple analysis of the renormalisation 
procedure. In particular, it explicitly shows that the operators in the original action 
are multiplicatively renormalised. 

We consistently carried out a double expansion around the Kosterlitz-Thouless 
temperature and E = N -4 with N representing an N-fold symmetry breaking perturba- 
tion to the X Y  model in the Coulomb gas formulation. 

The expansion was carried out to third order and we found a non-trivial fixed point 
at which the fugacities are of order & for N > 4. 

This method allowed us to identify a new set of ‘fixed point’ theories that do not 
undergo infinite renormalisations and do not seem a priori to be ‘trivial’. 

The method can be easily extended to incorporate charge asymmetry-this issue 
is currently under investigation. 

One of the outstanding questions is the following: at the new fixed points the theory 
is conformally invariant and is therefore characterised by the value of the conformal 
anomaly c (Belavin et a1 1984a, b, Friedan et a1 1984, Cardy 1987). The first question 
is the value of c at the non-trivial fixed point. 

Zamolodchikov’s theorem (Zamolodchikov 1986) tells us that there exists a function 
c that interpolates between the conformal anomaly at the fixed points and that 
diminishes or is stationary along infrared flows. This then guarantees that, if an I R  

fixed point is reached along the I R  flow, the value of c at the new fixed point is less 
or equal than that at the original theory. 

The analysis presented at the end of W 5 indicates that on the planes 6 = s’= 6*, 
the RG trajectories along the fixed lines Y = *G flow towards the trivial fixed point 
with c = 1 in the I R .  If this is indeed the case then this would suggest that the new 
fixed points describe theories with c > 1. We rule out the possibility for c = 1 since 
this would indicate that the perturbations just change the critical exponents but not 
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the critical behaviour, but this is only consistent with marginal operators at the KT 
point. Therefore we conjecture that these fixed points theories have c > 1. 

These issues and the study of the correlation functions are currently underway. 
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Appendix 1 

In this appendix we gather some well known results regarding normal ordering and 
the OPE. The reader may want to consult Mandelstam (1979, Coleman (1979,  Emery 
(1979) and Banks et a1 (1976) for further discussion. We work in Minkowski space, 
but the analytical continuation to Euclidean space is straightforward. 

Splitting up the fields bR and c $ ~  introduced in P 3 into creation (4R.J and 
annihilation (4i,L) parts and using 

( A l . l )  A 8- A+B $ [ A , B ]  e e - e  e 

for [A, B] commuting with A and B then the normal ordered expression is 

:exp(a4R(x)): = exp(a4,(x)) exp(a4i(x))  = exp{ia2[$'R(x), 4i(x)1} (Al.2) 

with ~ R ( X ) = ~ R ( X ) + ~ ~ ( X ) .  

A similar expression is obtained for + L .  

The commutator in (Al . l )  is regulated by defining it as an equal time point split 
expression [ ~ R ( x ) ,  ~$"R(y)]1,=~+. with U the uv cutoff (lattice spacing). The fields &, 
+ L  commute with each other since they correspond to independent right and left going 
waves. Hence using equation (2.4) in the text 

ea+ = :ea+:(p2a2)-a2/8~ 

= :ea6:(p2a2)-a2/8~ 

By repeated use of (Al.l) ,  it is found that 

:exp(ia4,(x)): :exp(iP4,( y)):  = :exp[ia4,( x) + ip4R(y)]:[p (x+ - y+)] a @ / 4 W  

:exp(iadL(x)): :exp(iP+L(y)): = :exp[ia+,(x) + i ~ 4 ~ ( y ) ] : [ p ( x -  - y-)]"@/"" 

with x+ as defined in (3.3) and correspondingly in Euclidean space. The above 
equations are easily generalised for more than two normal ordered exponentials. 

Appendix 2. Some OPE 

Consider, for example, 

:cos P + ( x ) :  :cos P d ( y ) :  =;:cos P(4 (x )+4 (y ) ) : (CL2 Ix -y l2 )P2 '4 r r  

(A2.1) 
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As x + y only the second term has singularities, writing + = c $ ~ +  +L and 

+R(X)  - +R(y) = (X'-y+)ay4R(y) 

+ L ( X )  - + L ( Y )  = (x- - Y - ) a , + L ( Y )  

the second contribution in (A2.1), after expanding in derivatives, is 

By using (2.8b) and (3.26) in Euclidean space we find 

-2dx+Rdx+L = (aT+)2 :  +constant 

or in Euclidean 

-2ax+Rax+L = - i : ( ~ ~ d ) ~ :  +constant. 

Now consider: 

(A2.2) 

(A2.3) 

cos &x): :cos y&y): .  

It is written in a form similar to (A2.1). The singularity as x + y arises from the term 

Now a difference arises because in 6, +L enters with opposite sign to that in +. 
This changes the sign in the ay+Rdy+L in (A2.2) (with P2 replaced by y 2 ) .  This change 
in sign is reflected in the relative sign in the beta function Pa given by equation ( 4 . 7 ~ )  
in the text. 

The OPE obtained from products of three cosine operators (of +,& or mixed) can 
be easily worked out in a similar manner. 

One more OPE is necessary for the contribution of the terms: (afi4)2: to the 
renormalisation of the fugacities 

:&4&): : exp(WR(y)) :  = :exp(iPdR(y))a,d,(x): + :exp(iP+,(y)): 

and similarly for dL with x- replacing x+. 

Appendix 3. Some integrals 

In the a3 contribution to Pa (or y 3  to p,) and G3 to PG we face the integrals 

to this order set P2=8.rr and define p ( z - x ) = R ,  p ( y - z ) = S .  
The integrals are regulated by a 

angle is straightforward and it yields 
[RI, IS1 l / p  the integration over the relative 
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The first two terms are disconnected since they correspond to y +  z (1x1 > lzl) and 
Izl), respectively, they must be discarded. Only the third term is connected. 

In the YG' contribution to PI. and the GY' contribution to PG we face the integrals 
x-, z 

writing x - y  = R, y - z = S, R'S- = I R 11 Slei@ with 0 the relative angle between R and 
S. 

To this order set P ' =  8 ~ .  The angular integration is easily performed by expanding 
the bracket in angular momentum states (eifR).  To do this, the integral over IS/ must 
be split into two domains: IRI > IS( and [RI < ISI. 

In the first there are no terms surviving the angular integration. The second yields 

Again there is a disconnected piece of the form 

that must be subtracted. 
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